

# TECHNICAL DATA SHEET

## GRILAMID LV-2A NZ

### General product description

Grilamid LV-2A NZ is a high viscosity polyamide 12 with 20% glass fibres and improved hydrolysis resistance compared to standard polyamide 12 materials. Grilamid LV-2A NZ has a high impact strength even at low temperatures.

Due to its very high melt strength, Grilamid LV-2A NZ is particularly well suited for the production of extrusion blow moulded articles, especially for large parts. It is processable on conventional as well as on 3 D-machines.

Grilamid LV-2A NZ is characterised by excellent resistance to most of the media used in automobiles, in particular by its resistance to zinc chloride solutions. In addition the material exhibits an unusually good resistance to hot water and anti-freeze solutions.

This product is suitable for technical articles of all kinds, especially for applications in the automotive industry.

Examples for possible applications are:

- Cooling hoses
- Fuel filler necks
- Crankcase venting ducts

### Grilamid LV-2A NZ key property profile:

- Polyamide 12
- Reinforced with a 20% glass fibre content
- High hydrolytic stability
- High impact strength
- Very high melt strength
- Suitable for extrusion blow moulding technology

**Grilamid®**  
**EMS**

## PROPERTIES

### Mechanical Properties

|                           |               | Standard      | Unit              | State | Grilamid<br>LV-2A NZ |
|---------------------------|---------------|---------------|-------------------|-------|----------------------|
| Tensile E-Modulus         | 1 mm/min      | ISO 527       | MPa               | cond. | 3500                 |
| Tensile strength at break | 5 mm/min      | ISO 527       | MPa               | cond. | 80                   |
| Elongation at break       | 5 mm/min      | ISO 527       | %                 | cond. | 15                   |
| Impact strength           | Charpy, 23°C  | ISO 179/2-1eU | kJ/m <sup>2</sup> | cond. | > 100                |
| Impact strength           | Charpy, -30°C | ISO 179/2-1eU | kJ/m <sup>2</sup> | cond. | > 100                |
| Notched impact strength   | Charpy, 23°C  | ISO 179/2-1eA | kJ/m <sup>2</sup> | cond. | 30                   |
| Notched impact strength   | Charpy, -30°C | ISO 179/2-1eA | kJ/m <sup>2</sup> | cond. | 20                   |
| Ball indentation hardness |               | ISO 2039-1    | MPa               | cond. | 95                   |

### Thermal Properties

|                                      |            |           |                     |     |          |
|--------------------------------------|------------|-----------|---------------------|-----|----------|
| Melting point                        | DSC        | ISO 11357 | °C                  | dry | 178      |
| Heat deflection temperature HDT/A    | 1.80 MPa   | ISO 75    | °C                  | dry | 130      |
| Heat deflection temperature HDT/B    | 0.45 MPa   | ISO 75    | °C                  | dry | 160      |
| Heat deflection temperature HDT/C    | 8.00 MPa   | ISO 75    | °C                  | dry | 75       |
| Thermal expansion coefficient long.  | 23-55°C    | ISO 11359 | 10 <sup>-4</sup> /K | dry | 0.4      |
| Thermal expansion coefficient trans. | 23-55°C    | ISO 11359 | 10 <sup>-4</sup> /K | dry | 1.5      |
| Maximum usage temperature            | long term  | ISO 2578  | °C                  | dry | 90 - 120 |
| Maximum usage temperature            | short term | ISO 2578  | °C                  | dry | 150      |

### Electrical Properties

|                              |     |             |       |       |                  |
|------------------------------|-----|-------------|-------|-------|------------------|
| Dielectric strength          |     | IEC 60243-1 | kV/mm | cond. | 35               |
| Comparative tracking index   | CTI | IEC 60112   | -     | cond. | 600              |
| Specific volume resistivity  |     | IEC 60093   | Ω · m | cond. | 10 <sup>11</sup> |
| Specific surface resistivity |     | IEC 60093   | Ω     | cond. | 10 <sup>12</sup> |

### General Properties

|                        |             |          |                   |     |      |
|------------------------|-------------|----------|-------------------|-----|------|
| Density                |             | ISO 1183 | g/cm <sup>3</sup> | dry | 1.12 |
| Flammability (UL94)    | 0.8 mm      | ISO 1210 | rating            | -   | HB   |
| Water absorption       | 23°C/sat.   | ISO 62   | %                 | -   | 1.1  |
| Moisture absorption    | 23°C/50% RH | ISO 62   | %                 | -   | 0.5  |
| Linear mould shrinkage | long.       | ISO 294  | %                 | dry | 0.30 |
| Linear mould shrinkage | trans.      | ISO 294  | %                 | dry | 1.00 |

Product-nomenclature acc. ISO 1874: PA12, MHR, 22-040, GF20

# Processing information for the extrusion of Grilamid LV-2A NZ

This technical data sheet for Grilamid LV-2A NZ provides you with useful information on material preparation, machine requirements, tooling and processing.

## MATERIAL PREPARATION

Grilamid LV-2A NZ is delivered dry and ready for processing in sealed, air tight packaging. Pre-drying is not necessary provided the packaging is undamaged.

### Storage

Sealed, undamaged bags can be kept over a long period of time in storage facilities which are dry, protected from the influence of weather and where the bags can be protected from damage.

### Handling and safety

Detailed information can be obtained from the "Material Safety Data Sheet" (MSDS) which can be requested with every material order.

### Drying

Grilamid LV-2A NZ is dried and packed with a moisture content of  $\leq 0.10\%$ . Should the packaging become damaged or be left open too long, then the material must be dried. A too high moisture content can be shown by a foaming melt, excessive nozzle drool and silver streaks on the moulded part.

Drying can be done as follows:

#### Desiccant dryer

|                         |              |
|-------------------------|--------------|
| Temperature:            | max. 80°C    |
| Time:                   | 4 - 12 hours |
| Dew point of the dryer: | -30°C        |

#### Vacuum oven

|              |              |
|--------------|--------------|
| Temperature: | max. 100°C   |
| Time:        | 4 - 12 hours |

### Drying temperature

Polyamides are subject to the affects of oxidation at temperatures above 80°C in the presence of oxygen. Visible yellowing of the material is an indication of oxidation hence temperatures above 80°C for desiccant dryers and temperatures above 100°C for vacuum ovens should be avoided. In order to detect oxidation it is advised to keep a small amount of granulate (light colour only !) as a comparison sample.

With longer residence times (over 1 hour) hopper heating or a hopper dryer (80°C) is useful.

## MACHINE REQUIREMENTS

Grilamid LV-2A NZ can be processed economically and without problems on all machines suitable for polyamides.

### Screw

Wear protected, universal screws are recommended (3 zones).

#### Screw

|                    |               |
|--------------------|---------------|
| Length:            | 24 D - 25 D   |
| Compression ratio: | 2.8:1 - 3.5:1 |

### Grooved Feeding Zone

A grooved bush is usually not recommended for the extrusion of polyamides grades. Anyhow, in order to obtain a higher through-put by using a grooved bush it's depth should not exceed 0.5 mm.

## PROCESSING

### Basic machine settings

In order to start up the machine for processing Grilamid LV-2A NZ, the following basic settings can be recommended:

#### Temperatures

|                  |             |
|------------------|-------------|
| Hopper zone      | cooled      |
| Feeding zone     | 220 - 230°C |
| Compression zone | 220 - 230°C |
| Metering zone    | 220 - 230°C |
| Head             | 220 - 230°C |
| Nozzle           | 210 - 230°C |
| Melt             | 220 - 240°C |

## **CUSTOMER SERVICES**

EMS-GRIVORY is a specialist in polyamide synthesis and the processing of these materials. Our customer services are not only concerned with the manufacturing and supply of engineering thermoplastics but also provide full technical support including:

- Rheological design calculation / FEA
- Prototype tooling
- Material selection
- Processing support
- Mould and component design

We are happy to advise you. Simply call one of our sales offices.

The recommendations and data given are based on our experience to date, however, no liability can be assumed in connection with their usage and processing.